Benha University

Faculty of Engineering- Shoubra

Eng. Mathematics & Physics Department

Preparatory Year

Final Term Exam

Date: 2 - 6 - 2013

Course: Mathematics 1 - B

Duration: **3** hours

• Answer All Ouestions

• The Exam consists of one page

- No. of questions: 4
- Total Mark: 100 Marks

Question 1

(a) If
$$A = \begin{bmatrix} 2 & -2 & -1 \\ 1 & 1 & 0 \\ 3 & 0 & -3 \end{bmatrix}$$
 and $B = \begin{bmatrix} 1 & 3 \\ 0 & 2 \\ 2 & -1 \end{bmatrix}$. Find, if possible, A + B, A.B, |A|, |B|.

- (b) Find the eigenvalues and eigenvectors of the matrix: $A = \begin{bmatrix} 2 & 1 \\ 3 & 0 \end{bmatrix}$
- (c) Solve the linear system: x + y z = 2, 3x + 2y + z = 3, 2x + y + 2z = 1.
- (d) Find S_n , S_{10} from each series: (i) $\sum_{k=1}^n k(2k+1)$ (ii) $\sum_{k=1}^n \frac{2}{k^2 + k}$

6

6 6

6

6

6

6

8

7

7

7

7

7

7

8

Question 2

(a) If
$$z_1 = 2 - i$$
, $z_2 = -3 + 2i$. Find $z_1 \cdot z_2$ and $(z_1 + z_2)^{10}$

- (b) Find u and v of the complex function: $f(z) = z^2 + \cos \overline{z}$.
- (c) Using the binomial theorem, expand: $\frac{1}{\sqrt{4-3r}}$
- (d)Using the mathematical induction, prove that:

(i)
$$1 + 3 + 5 + \dots + (2n - 1) = n^2$$

(ii)
$$(1+x)^n \ge (1+nx)$$

Question 3

- (a) Write the equation of tangent line to the hyperbola $4x^2 9y^2 = 1$ which is parallel to the line 4y = 5x + 7.
- (b) Find the equation of ellipse where the length of latus rectum is 10 and the distance between the foci equals to the minor axis.
- (c) Find the equation of pair of lines joining the origin with the points of intersection of the circles: $x^2 + y^2 - 4x - 2y = 4$, $x^2 + y^2 - 2x - 4y - 4 = 0$.
- (d) Write the equation of line in space passing through the points: P(3,4,5), Q(5,2,-1).

Question 4

- (a) Find the equation of circle whose radius $4\sqrt{5}$ and its tangent at the point (6, -7) is line x - 2y = 20.
- (b) Find the equation of the plane which contains the line $x = \lambda$, $y = \lambda$, $z = \lambda 2$ and is perpendicular to the plane 2x + 7y - 3z = 1.
- (c) Prove that the line: $x = -1 + 3\lambda$, $y = 2 + 6\lambda$, $z = 3 + 4\lambda$ is parallel to the plane 2x + 3y - 6z + 7 = 0 and find the distance between them.

Algebra

Mid-Term Exam

Total mark: 15

122800200			 2 0 0002 22202 220 20	
Group	Section	No.	اسم:	الإ

[1]Complete the following statements:

- (a)A square matrix A is called symmetric if.....
- (b) A square matrix A has inverse A^{-1} if.....
- (c) A linear system AX = B is called consistent if.....
- (d)The rank of a matrix A is....

.....

[2] Solve the linear system: x - y + 2z = 3, -x + y - 2z = 2, 2x + y + z = 1.

[3]If
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 2 & 1 \end{bmatrix}$$
, $B = \begin{bmatrix} 2 & 1 \\ 0 & 2 \\ 3 & 1 \end{bmatrix}$. Find if possible: $A + B$, $A + B^t$, $|A|$ and $|BA|$

[4]Find the eigenvalues and the eigenvectors of the matrix: $\mathbf{A} = \begin{bmatrix} 2 & 2 \\ 2 & -1 \end{bmatrix}$